
Going global with localhost
Talk by Maciej Pędzich

About me

Demo

My network’s diagram

Virtual Local Area Networks

Router + Switch

 1 2 3 4 5

WAN VLAN
10

VLAN
20

VLAN
99

VLAN
20

➔ Physically uniform network is split into
logical segments

➔ Ports 2-5 are assigned a VLAN ID
➔ Outgoing packets get assigned a tag with

their source VLAN’s ID
➔ If a packet is allowed through, its VLAN ID

tag gets removed
➔ Appropriate firewall rules ensure devices

on different VLANs are separated…
➔ … but they may allow a service living on

one VLAN to be accessed from other
VLANs

➔ VLAN 10 (Homelab) - 10.0.10.1/24

➔ VLAN 20 (Guest) - 10.0.20.1/24

➔ VLAN 99 (Admin) - 192.168.99.1/24

CIDR notation by example
➔ Task: convert 10.0.10.1/24 notation to first IP - last IP
➔ Step 1: take the part before the slash - that’s the first IP
➔ Step 2: convert each decimal number in that address to 8-bit binary and then

write number after slash 1s underneath (starting from the left-hand side)
00001010.00000000.00001010.00000001
11111111.11111111.11111111.00000000

➔ Step 3: to get the last address, write down a digit from the top if there’s a 1
underneath it, and write 1 if there’s a 0 underneath
00001010.00000000.00001010.11111111

➔ Step 4: convert the result back to decimal - 10.0.10.255
➔ Result: 10.0.10.1 - 10.0.10.255

Docker containers
➔ Why: we want to mitigate dependency

hell and environment variable conflicts

when running multiple apps on the same

machine

➔ How: each application’s configuration,

assets, required libraries, and so on get

packaged up into an image that can be

used to create an isolated sandbox for

the app to run in
Host Operating System

Docker Engine

Container 1

Dependencies

App 1

Container 2

Dependencies

App 2

Showcase of my own PaaS
with dark theme and webhooks

Docker networks
➔ Why: we want certain containers to be

able to talk to each other using the

network while maintaining isolation

between them and the host

➔ How: Docker creates a software bridge,

which allows containers on the same

network to communicate, but also adds

firewall rules on the host to ensure

separation Public Services Network

Network 1

App 1

DB 1

Network 2

App 2

DB 2

Reverse
Proxy

Reverse Proxy
➔ Why: we want to access our web apps

via memorable domain names without

having to expose and remember unique

ports on the host for each service

➔ How: reverse proxy behaves like a

middleman between the client and web

servers, forwarding appropriate requests

to the right services (but also handling

TLS encryption, access control, and

more)

Host: foo.example.com

Client

Reverse Proxy

Foo AppBar App XYZ App

bar.example.com xyz.example.com

Dynamic DNS
➔ Why: chances are your router’s got a

dynamic IP address, meaning you have

to update your domain name’s records

every time it changes

➔ How: employ a DDNS service that will

periodically update DNS records for a

free domain name, or create your own

script if your name server provider

allows you to do that via a Web API

It’s not DNS
There’s no way it’s DNS
It was DNS

Port forwarding
➔ Why: while your router can keep track of

outgoing connections and the local IPs

to which appropriate response packets

should be sent, it can’t automatically do

the same for incoming connections

➔ How: it’s necessary to add a special rule

in your router that will tell it to forward all

incoming TCP packets on ports 80 and

443 to the same ports on your server’s

local IP address

Client

Router

10.0.10.2:44310.0.20.5:2137 192.168.0.3:443

12.34.56.78:443

Carrier-grade NAT

➔ Problem: even if you forward the right ports

on your home router, they might get

blocked by your ISP’s router, as the former

is effectively sitting behind a NAT managed

by your carrier - hence the name

Internet

ISP’s Router
12.34.56.78

Home Router 1
100.64.0.1

Home Router 2
100.64.0.2

Computer 1
192.168.0.2

Computer 2
192.168.0.3

Computer 1
192.168.0.2

Computer 2
192.168.0.3

Connecting to a public server via LAN

➔ Problem: right now, any attempt to

connect to a public server using any

device on the local network will fail,

because that device will be expecting a

packet from the router’s public IP, but

instead it will receive an unexpected

packet from the server’s local IP

WAN: 12.34.56.78
LAN: 192.168.0.1

Router

Client
192.168.0.2

Server
192.168.0.3

dst: 1
2.34.56.78 src: 192.168.0.2

dst: 192.168.0.2

src: 1
92.168.0.3 (d

ropped)

Solution 1: NAT hairpinning

➔ Some routers may allow you to mask

the local device’s IP behind the one

used by the router and have it track the

connection to ensure that the server’s

local IP will later get translated back to

the router’s public IP address

WAN: 12.34.56.78
LAN: 192.168.0.1

Router

Client
192.168.0.2

Server
192.168.0.3

dst: 1
2.34.56.78 src: 192.168.0.1

dst: 192.168.0.1src: 1
2.34.56.78

Solution 2: Split-horizon DNS
➔ Alternatively, you can set up an internal

DNS server (although your router should

provide one) and add records that will

have the “naked” domain and all

subdomains point to the server’s local IP

address

➔ This is generally the recommended

solution, because the router doesn’t

have to hide the requester’s IP, as it’s in

the same network with the server

External DNS lookup

Internal DNS lookup

Pros of self-hosting
➔ Freedom to run whatever software you want

➔ Full control of your own data

➔ Potentially cheaper than a subscription

➔ Giving your unused computer a new life

➔ Fun learning experience

Cons of self-hosting
➔ Initial learning curve

➔ Potentially more expensive than a subscription

➔ Poor scalability (both up and down)

➔ Inconsistent loading times across the globe

➔ Responsibility for security and maintenance

Thank you!

